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EXECUTIVE SUMMARY  
 
This document reports the research results corresponding to Task 2.1 “Research FL-tailored AI 
models, aggregation methods and PET tools” of the FLUTE “Federated Learning and mUlti-party 
computation Techniques for prostatE cancer” project. In line with what it is expected from this task, 
the information gathered in this deliverable can be divided into three fundamental aspects: 
 

• An analysis of Artificial Intelligence (AI) models from two complementary perspectives. On 
the one side, the application of AI to the healthcare field, focusing on the clinical use case 
targeted by this project: clinically significant prostate cancer (csPCa) prediction, with the aim 
of driving the development of FLUTE’s predictive models based on this research, together 
with the clinical support provided by the project’s clinical partners. On the other hand, the 
application of federated ML models, or Federated Learning (FL), ranging from its high impact 
in clinical field to identifying the state-of-the-art central aggregation methods to be used in 
the federated setting of the FLUTE project. 

 
• State-of-the-art study of Privacy-enhancing Technologies (PETs) that can potentially be 

used for ensuring privacy in the federated FLUTE environment. In this regard, two 
approaches will be explored: software methods and hardware methods. In the former case, 
Secure Multi-party Computation (SMPC) has been explored from a scalability point of view. 
In the latter, the study was focused on the advantages of using Trusted Execution 
Environments (TEEs) in FL.   
 

• A description of the software tools to be used in FLUTE project. On one hand, the use of 
specific tools for FL settings, with a particular focus on PySyft technology, will be defined. On 
the other hand, the software tools that will be provided by the partner QBIM to extract 
information from Magnetic Resonance Images (MRI) to be used for csPC predictive models 
training, will also be described. 
 

The research conducted in this task builds upon the work developed and already reported in the 
TRUMPET project, which has been expanded in this deliverable. 
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1. Introduction 

In the last decade, Artificial Intelligence (AI) has undergone exponential growth, revolutionising the 
ways in which we interact with technology and reshaping decision-making across diverse sectors. 
Currently, we can say that AI is part of everyday life, making headlines in the news daily due to its 
remarkable advances. Everyone has heard about AI and how it is changing our day-to-day lives. 
Among the most talked-about technologies we can find, for example, self-driving cars, 
recommendation systems used by streaming platforms like Netflix or HBO Max, or fraud detection 
systems. In addition, it could be said that in recent years, AI technologies have generated great 
interest among the general population with the emergence of tools such as ChatGPT1 or image 
generation tools on demand, like DALL-E2. 

As of today, AI is present in all sectors of society, including manufacturing, education, banking or 
medicine. However, in the realm of AI, advances in innovation face a challenge due to limited access 
to high-quality datasets that enable the development of truly useful and efficient algorithms. 
Unfortunately, this is greatly evident in one of the sectors where AI can have great potential: the 
healthcare sector. Clinical data are typically scattered across several locations, including hospitals, 
clinics, and medical devices, so that to obtain large training datasets for the algorithms, it is often 
necessary to aggregate all this information in one node. The consolidation of clinical data from 
diverse sources raises concerns about privacy and security. The health data, being highly sensitive, 
is subject to stringent privacy regulations, like the General Data Protection Regulation (GDPR) in the 
European Union or hospital’s Ethical Committees. Due to these concerns, it is necessary to search 
for alternatives to train more efficient algorithms, making critical the technologies that address 
privacy and security issues. Seeking to be one of these alternatives, Federated Learning (FL) emerges 
as a relevant solution. 

Under the research framework of the FLUTE project, a scalable privacy enhanced FL environment 
will be designed, deployed and tested, which will host the training of Deep Neural Networks (DNNs) 
based algorithms for clinically significant prostate cancer (csPCa) prediction. This document fits the 
framework of WP2 “Scalable privacy-enhanced Federated Learning and AI” and collects a study of 
the state-of-the-art of the different technologies that will be researched and developed for this 
purpose.  

As shown in Figure 1, the work carried out in WP2 will follow the specifications defined in WP1 
based on the needs and requirements of users and stakeholders (T1.1 and T1.2) and will comply 
with the legal and ethical guidelines and standards defined in WP6. Technological outcomes of WP2 
will be integrated, similarly to those in WP3, in the FLUTE platform developed in WP4. Furthermore, 
WP2 work will be used as input for WP9, where WP2 results will be examined and reused in terms 
of AI and the developed PETs will be used for secure training. Finally, these technologies will be 
validated in WP5. 
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Figure 1. Relationship of WP2 with the different FLUTE WPs 

This document is directly related to T2.1 “Research FL-tailored AI models, aggregation methods and 
PET tools” and its main objective is to report an analysis of AI models and different aggregation 
methods for a FL environment, as well as the state of the art in PET (Privacy-enhancing Technologies) 
methods and software tools for FL environments: 

• Section 2 aims to analyse the state-of-the-art of FL with a special focus on the medical field, 
and more specifically on the same use case as FLUTE: csPCa prediction. It will start by 
analysing the relevance of AI in the clinical field and providing a detailed analysis of several 
AI-based research on csPCa prediction. Furthermore, it will show how FL emerges as a 
fundamental tool in the clinical domain. Different studies using FL solutions in the clinical 
setting will be presented, ending with some examples related to csPCa prediction. Finally, 
different techniques to enhance AI model performance in a federated environment will be 
discussed and also different available aggregation methods for FL environments will be 
described. 

• Section 3 will be focused on the study of PET methods that ensure information privacy and 
also the scalability of results in a FL environment. Specifically, the study conducted here 
focuses on two types of PET technologies, one of them software-based and the other, 
hardware-based: Secure Multi-party Computation (SMPC) and TEEs (Trusted Execution 
Environments).  

• Section 4 will discuss the different frameworks, tools and software that will be used in the 
FLUTE. It will focus, on the one hand, on the tool that will be used in the FLUTE’s FL 
environment: Pysyft. On the other hand, two software tools will be presented, that will be 
used within the framework of WP2 to process MRI images and extract Quantitative Imaging 
Biomarkers (QIBs) for use as input in the csPCa prediction algorithms: the QP-Care® and the 
QP-Prostate. 
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 It is worth mentioning that this document builds on the work already carried out and reported in 
the TRUMPET3 “TRUstworthy Multi-site Privacy Enhancing Technologies” project. Therefore, with 
the aim of avoiding redundant information, some sections of this document may include references 
to this project. 

1.1. Study outcomes and WP continuity  

From the analysis of the various technologies in this study, the best techniques will be selected for 
use in the development of subsequent tasks within the WP. As shown in Figure 2, this study will 
yield insights into how the csPCa prediction algorithms should be approached, as well as the 
techniques to enhance their performance and convergence within the scope of T2.2 “Design and 
development of AI models for prostate cancer diagnosis and aggregation methods for FL scenario”. 
Furthermore, it will provide the necessary foundation to start working on software-based and 
hardware-based PETs, the responsibility of T2.3 “Design, development and assessment of software-
based PETs for FL settings” and T2.4 “Design, development and assessment of hardware-based PETs 
for FL settings”. 

In this WP, validation of the PET methods will also be performed in task T2.5 “Validation and 
benchmarking of combined PET methods for privacy-armored FL”, where various combinations of 
hardware and software-based PET techniques will be studied to find the optimal combination for 
the FL environment. The validation of the csPCa prediction model will be carried out in WP5 
“Validation of FLUTE solution for prostate cancer prediction”. 

 

Figure 2. Relationship of FLUTE WP2 tasks and with WP5  
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2. State-of-the-art on FL-tailored AI models for prostate cancer 
prediction 

Artificial Intelligence (AI) is at the forefront of computer science, dedicated to the development of 
systems capable of emulating and performing tasks that traditionally require human intervention 
and intelligence. These systems can learn from data, recognise patterns, make decisions and adapt 
to new situations; abilities that make AI a very useful tool that is increasingly used across various 
sectors of society.  
AI offers innovative and efficient solutions to a diverse array of challenges, ranging from automating 
tedious tasks to optimising complex processes. Its capacity to analyse extensive datasets and 
generate useful insights has transformed industries such as healthcare, manufacturing, finance and 
many other, offering tangible benefits in terms of efficiency, accuracy and quality of life. 
Machine Learning (ML) is one of the most widely employed AI technologies. It is a sub-field of AI 
that enables machines to learn patterns and perform tasks without being explicitly programmed, 
providing a unique capability to analyse data and offer automated predictions or decisions. ML is a 
broad field that encompasses several types of AI technologies which offer a wide range of 
possibilities depending on the type of data available for training and the task to be addressed. 
Among the most well-known ML techniques are technologies such as regression models, decision 
trees, clustering technologies and Deep Learning (DL) algorithms. Chauhan et al.4 defines DL as 
branch of ML designed to replicate the function of the human cerebral cortex. DL algorithms are 
representations of Deep Neural Networks (DNNs), which are characterised by numerous hidden 
layers. The neurons in these networks operate in a distributed manner, collaboratively learning from 
the input to produce a desired output. This approach has proven to be particularly effective in the 
interpretation of unstructured data such as images, sound and text, leading to significant advances 
in fields such as computer vision, natural language processing and speech recognition. The broad 
capabilities have made these techniques widely used in many sectors of the society, from traffic 
control or detecting imperfections on production lines, to interpreting medical images. 
Federated Learning (FL)5 6 is a field of AI that extends the principles of ML by allowing models to be 
trained in a decentralised way at the different data locations, rather than the traditional approach 
of centralising data to train models. This allows to avoid the need for direct transfer of raw data, 
avoiding potential privacy and security issues.  
This section will examine AI models from two main perspectives. Firstly, it will introduce the 
significant impact of AI in the medical field, delving into solutions that address the same use case as 
the FLUTE project: predicting csPCa. Next, it will discuss the relevance of FL tools in the clinical 
setting, concluding with some examples of FL application in csPCa prediction. Finally, various 
methods to enhance FL algorithms’ performance will be analysed, as well as the different 
aggregation methods for FL studied in the state-of-the-art.  
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2.1. AI-powered csPCa prediction models 

One highly useful application of AI is clinical practice. According to a study by S. Secinaro et al.7, 
since the 1950s, doctors have attempted to improve diagnosis using computer-assisted programs8 
9. Since then, interest and advances in AI medical applications have increased significantly due to 
the major technological advancements and the vast amount of data available for collection and 
utilization. 

AI algorithms have shown tremendous efficiency in analysing large amounts of data of diverse 
nature and finding patterns sometimes hidden to the human eye. In the clinical domain, these 
technologies are proving to be of great assistance in analysing data from various sources, such as 
electronic health records (EHR) of patients, medical images such as X-rays or magnetic resonance 
imaging (MRI), real-time patient data, hospital management data, and even, more recently, genomic 
data of individuals. A large number of studies and research focusing on the application of AI in 
different health fields have been published. These range from detecting possible patterns of 
depression or anxiety from patient data or automatically identifying tumours in medical imaging, to 
identifying risk factors for certain diseases, discovering new relevant biomarkers, or even optimising 
clinical healthcare resources. The possibilities are as numerous as ailments, types of data, and 
technological opportunities. 

The application of intelligent algorithms and ML systems is revolutionising the ways in which 
diseases are diagnosed, treated, and managed today. In addition to providing valuable support to 
clinical staff in decision-making, these tools provide tremendous support to patients in terms of 
monitoring and empowerment. As part of the FLUTE study, the efficacy of AI in detecting diseases 
will be demonstrated, with a specific focus on csPCa prediction.  

According to the WHO, cancer is one of the leading causes of death globally, responsible for nearly 
10M deaths per year (statistics from the year 2020). The same study reported approximately 1.41M 
cases of prostate cancer around the world, placing this disease among the top five types of cancer 
with the highest incidence10. Thus, prostate cancer stands as one of the prevailing malignancies 
among the global male population.  

When making decisions regarding prostate cancer treatment, the ability to differentiate tumours of 
clinical significance is paramount and aims to prevent both unnecessary treatment and instances of 
underdiagnosis. csPCa involves the presence of cancer cells in the prostate with the potential to 
grow and spread. Uncontrolled proliferation of cancer cells can lead to the formation of a tumour, 
and if these cells manage to leave the prostate and enter the bloodstream or the lymphatic system, 
they can travel to other parts of the body, creating metastasis. In contrast, non-clinically significant 
prostate cancer implies the presence of cancer cells in the prostate, but the cells do not pose the 
same risk of aggressive growth and spread. For this reason, early detection and accurate assessment 
of the grade and stage of prostate cancer are crucial to determining the risk and aggressiveness of 
the disease, and to guiding treatment decisions. Conventional detection techniques, including 
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prostate-specific antigen (PSA) testing and biopsy, while useful, are invasive and prone to false 
positives or negatives. And this is where new technologies have emerged as a promising tool to 
enhance accuracy and efficiency in csPCa prediction. 

Many researchers have focused their studies in recent years on trying to find alternative ways to 
identify or predict cases of csPCa in an efficient and less invasive way. According to a study 
conducted by D.J. Van Booven et al.11, the use of AI has been shown to be beneficial in assisting with 
pathological classification to assess stratification and treatment of prostate cancer. Furthermore, AI 
shows promise in automating the evaluation of prostate cancer characterization and severity based 
on clinical data and image-based tasks.   

2.1.1. Clinical variable-based models 

Focusing on the use of clinical data for the detection of this type of cancer, we encounter several 
interesting studies that are based mainly on the use of variables such as serum PSA or digital rectal 
examination (DRE). Identifying elevated levels of PSA is a common clinical approach for diagnosing 
prostate cancer. However, elevated PSA levels can also occur in various benign prostatic conditions. 
Approximately 75% of men who undergo a prostate biopsy do not have cancer even if they have 
elevated PSA levels. The overdiagnosis leads to unnecessary overtreatment of prostate cancer with 
undesirable side effects, such as incontinence, erectile dysfunction, infections, and pain12. For this 
reason, many studies have assessed the utility of PSA and other clinical characteristics in the context 
of AI for detecting prostate cancer and/or its progression. Such research carried out by Morote J. et 
al. at Vall d'Hebron Institute (VHIR): “The Barcelona Predictive Model”13. This model, based on a 
binary logistic stepwise regression, has been able to predict csPCa with a good accuracy (AUROC 
0.89) on a cohort of 1,486 patients from the Barcelona’s area, using some clinical variables as input: 
age at the time of biopsy, Ca family history, initial or repeated biopsy, serum PSA, DRE, prostatic 
volume and PI-RADS category. Another related article by M. Stojadinovic et al.14 described a 
Classification and Regression Tree (CART) model that could be used to identify patients with csPCa 
based on clinical data such as age, PSA, DRE, prostate volume, and PSA density (PSAD). This model 
resulted in an 0.833 area under the receiver operating characteristic curve and determined that PSA 
density was the most decisive variable, showing that the decision tree provided a net benefit 
compared to a logistic regression model. 

Other researchers have been analysing the use of techniques based on Artificial Neural Networks 
(ANNs) for the detection of such ailments for over 20 years. B. Djavan et al.15 conducted a study 
aimed at prospectively developing two ANNs for early detection of prostate cancer in men with total 
PSA levels of 2.5 to 4 ng/mL and 4 to 10 ng/mL. The area under the receiver operating characteristic 
curve (ROC AUC) was 0.876 and 0.913 for the ANN models of 2.5 to 4 ng/mL and 4 to 10 ng/mL, 
respectively. Another notable example is the study conducted by Finne et al.16, which aimed to 
assess whether an ANN (multilayer perceptron, MLP) and Logistic Regression (LR) could provide an 
additional reduction of false-positive PSA results compared to the proportion of free PSA in prostate 
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cancer screening. The model was built using data on total PSA, free PSA ratio, DRE, and prostate 
volume. The results showed that with a sensitivity level of 95%, a 19% reduction of false-positive 
PSA results could be achieved using the free PSA ratio, compared to 24% with the logistic regression 
model and 33% with an ANN. 

Recent studies also focus on the advanced use of DL techniques to aid in the diagnosis of csPCa. F. 
Gentile et al.17 developed a DL model based on ANN with an input layer, an output layer, and 7 
hidden layers. The output layer returns a value between 5 to 10, representing the hypothesised 
Gleason score of the cancer. The clinical variables inserted into the model are total PSA, free PSA, 
p2PSA, PSA density, and age. Their model achieved sensitivity values as high as 86% and a specificity 
of 89%. 

As seen from this literature analysis, numerous studies have been conducted for the diagnosis of 
csPCa using only clinical variables such as PSA or DRE, along with other information such as patient 
age. All this research, ranging from simple AI models to more complex techniques, have shown high 
performance in detecting this ailment, being a great support for clinicians to effectively diagnose 
positive cases and avoid over-diagnosis, thus reducing unnecessary testing. 

2.1.2. Magnetic Resonance Imaging (MRI)-based models 

A very relevant technique for detecting csPCa, in addition to evaluating values such as PSA or DRE, 
is the assessment of MRI results. The two known modalities of this type of technique, 
multiparametric MRI (mpMRI) and biparametric MRI (bpMRI), are powerful tools in the assessment 
of prostate cancer, as they provide a detailed and accurate image of the prostate gland and the 
surrounding tissues. mpMRI employs three imaging sequences — typically T2-weighted, diffusion-
weighted (DWI), and dynamic contrast-enhanced (DCE) images— and demonstrates high sensitivity 
and specificity in detecting csPCa. Current guidelines advocate its use before biopsy. However, the 
accuracy of DCE is currently being debated. bpMRI, using only T2 and DWI, has been suggested as a 
feasible alternative18. 

In the classic diagnostic workflow of csPCa detection using MRI information, the clinician is 
responsible for analysing the image and associating the severity based on their observation. As 
explained by H. Lu et al.19, most clinical diagnoses follow a consensus reporting standard with the 
adoption of Prostate Imaging Reporting and Data System (PI-RADS)20, which provides qualitative 
guidelines for clinical assessment. However, there is variability in the interpretations of scans among 
radiologists, which can be attributed in part to the steep learning curve required for scan 
interpretation21. Therefore, in recent years, there has also been a lot of interest in the study of 
Quantitative Imaging Biomarkers (QIBs). Many studies have shown that these specific 
characteristics that can be extracted from MRI scans can help predict csPCa and improve the 
performance of PI-RADS22. A QIB refers to an objective and numerical measure used to assess the 
presence or progression of a disease, health status, or treatment response, as opposed to a 
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qualitative biomarker, which relies on subjective observations. When referring to images, 
particularly MRI images, a quantitative biomarker involves precise numerical measurements 
obtained from MRI images to quantify specific tissue characteristics under examination. In the 
research on the diagnosis of csPca through MRI image analysis, several interesting QIBs have been 
identified. Some of these are mentioned below: 

• Apparent Diffusion Coefficient (ADC) measures the mobility of water in tissues. Areas with 
csPCa tend to have lower ADC values due to restricted cellular movement. A low ADC can 
indicate the presence of aggressive tumours. 

• Diffusion Fraction (f) evaluates how ADC varies with different echo times. Specifically, it can 
provide information about the mobility of water in tissues, which is useful for characterizing 
prostate cancer. 

• Ktrans. The transfer constant between the vascular and the extravascular extracellular space 
(EES). This measure assesses vascular permeability, that is, how easily molecules can pass 
from the bloodstream to the extravascular extracellular space. It is extracted from modelling 
the contrast perfusion in a DCE sequence, and it is related to tumor vascularisation. 

• Kep. This measure quantifies the washout, which is the process opposite to Ktrans. While 
Ktrans evaluates the entry of molecules from the vascular to the extravascular space, Kep 
assesses the rate at which those molecules are cleared from the extravascular space and 
return to the bloodstream. It is extracted from modelling the contrast perfusion in a DCE 
sequence, and it is related to tumor vascularisation. 

• Ve. The fraction of volume of EES. This measure indicates what proportion of the 
extravascular space is occupied by the contrast agent or the molecules of interest. It is a 
measure of the distribution of these molecules in the extravascular extracellular space 
relative to the total volume of that space. It is extracted from modelling the contrast 
perfusion in a DCE sequence, and it is related to tumor vascularisation. 

• Radiomics, which refers to high-throughput quantitative imaging features (also known as 
texture characteristics) in MRI images, such as tumour tissue heterogeneity, that can provide 
information about the aggressiveness of prostate cancer. 

• Tumour-to-Gland Volume Ratio (TGV). This measure compares tumor volume to the total 
volume of the prostate gland and can help to assess the relative extent of the tumor in the 
prostate gland. 

Among the most prominent metrics are the aforementioned ADC and DCE. Some researchers have 
focused on demonstrating that these types of metrics can be highly relevant in distinguishing cases 
of prostate cancer23. Recently, radiomic features have also proven to be very useful in assessing the 
severity of the disease24. ÁS Iglesias. et al.25 published a study aiming to identify potential imaging 
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biomarker profiles (perfusion/diffusion + radiomic features) extracted from MRI that could 
discriminate patients according to their risk or the occurrence of biochemical recurrence (BCR) 10 
years after diagnosis, as well as to evaluate their predictive value with or without clinical data. In 
this study, which involved the FLUTE project partner QBIM, three types of characteristics were 
extracted: texture/radiomic features and quantitative parameters (diffusion and perfusion features) 
from T2-w and DWI and DCE sequences respectively. In their results, they observed that prostate 
region-wise imaging biomarker profiles, mainly composed of radiomic features, allowed for 
discriminating between risk groups and patients with BCR. Overall, the image biomarker profiles 
retained good predictive capability (AUC values exceeding 0.725 in most cases), which improved 
overall when some clinical variables were included.  

Seeing the utility of this type of data, some researchers have ventured into developing AI models 
capable of predicting cases of csPCa based on them. DJ Winkel et al.26 published a study that 
investigated whether supervised ML classifiers could predict csPCa from a set of quantitative image 
features and compared these results with established PI-RADS v2 assessment scores. To do this, 
they took perfusion maps, ADC, and absolute T2-signal intensities as input. Specifically, they trained 
four AI models for this task: Gradient Boosting Machines (GBM), Neural Networks (NNet), Random 
Forest (RF), and Support Vector Machines (SVM). All ML models outperformed PI-RADS v2 
assessment scores in the prediction of csPCa (RF, GBM, NNet, and SVM vs. PI-RADS: AUC 0.899, 
0.864, 0.884, and 0.874 vs. 0.595). These results clearly indicate that QIBs contain relevant 
information for csPCa prediction from image features and that AI can lead to a significant 
advancement and aid in its analysis. 

As can be seen, MRI is a key tool for clinicians in diagnosing cases of csPCa and, as expected, AI has 
also taken a step forward in analysing such images. Thanks to the advancement of AI technologies, 
the study of DL modelling has enabled the interpretation of medical images, such as the 
aforementioned bpMRI and mpMRI, or ultrasound, with unprecedent accuracy. Specifically, the use 
of DL techniques for analysing this type of images in diagnosing csPCa is also a field of study for 
several researchers. Sun Z. et al.27 compared the performance of radiologists in detecting MRI-
visible csPCa in MRI with and without AI software. This software is based on four proprietary DL-
based AI models: (i) MRI sequence classification, (ii) prostate gland segmentation and 
measurement28, (iii) prostate zonal anatomy segmentation and (iv) csPCa foci segmentation and 
measurement. They found that this DL software could help to reduce false positive detections 
(specificity increased from 57.7% to 71.7%), improve reading times, and increase diagnostic 
confidence. 

In a comparative endeavour, Z.Litao et al.29 conducted a study on how different DL models based 
on bpMRI can achieve similar performance to the PI-RADS assigned by clinicians for csPCa diagnosis. 
They developed four 3D neural network models (ResNet3D30, DenseNet3D, ShuffleNet3D, and 
MobileNet3D) with two objectives: classifying between benign and malignant lesions and classifying 
clinically significant and non-significant cancer. Additionally, they developed an integrated model 
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that combines PI-RADS and the DL-CS model, abbreviated as PIDL-CS. The performances of the DL 
and PIDL-CS models were compared with those of PI-RADS. The results, validated in four different 
hospitals, suggest that the performance of the DL-CS-ResNet model and PI-RADS are comparable, 
with the difference in ROC curves not being significant. Their proposed DL models can therefore 
serve as  a potential non-invasive auxiliary tool for predicting csPCa. Furthermore, PIDL-CS 
significantly increased the specificity of csPCa detection compared to PI-RADS assessment by expert 
radiologists, thus greatly reducing unnecessary biopsies and aiding radiologists to get accurate 
diagnosis of csPCa. Another notable example is the study conducted by M. Hosseinzadeh et al.31, 
aimed at assessing PI-RADS-trained DL algorithm performance and investigating the effect of data 
size and prior knowledge on detecting csPCa in biopsy-naive patients from bpMRI data. Their results 
showed a sensitivity for detecting PI-RADS ≥ 4 lesions of 87% and an AUC of 0.88. The sensitivity for 
detecting Gleason score > 6 lesions was 85%. They also concluded that AI for prostate MRI analysis 
heavily relies on data size and prior zonal knowledge, and that substantially more than 2,000 training 
cases are needed to achieve expert-level performance. 

Furthermore, in a comparison between the use of mpMRI and bpMRI in the diagnosis of prostate 
cancer, Xu L. et al.32 conducted a study in which they concluded that there is no significant difference 
between the two modalities. However, they point out that DCE MRI helps distinguish between 
csPCA and PCa in patients with bpMRI score of 3 or higher. Specifically, in cases where bpMRI is 4, 
the inclusion of DCE MRI facilitates clear identification of tumour aggressiveness and allows for 
individualized cancer treatment to be developed. Additionally, it emphasizes that sensitivity is 
higher when combining T2-weighted images (T2WI) with diffusion-weighted images (DWI) 
compared to evaluating T2WI alone. 

However, while the use of DL techniques for this type of task has been previously mentioned, it is 
true that there are also studies that, using more traditional ML techniques, have demonstrated good 
results in the analysis of MRI information. In the review carried out by Sushentsev33 titled 
“Comparative performance of fully-automated and semi-automated artificial intelligence methods 
for the detection of clinically significant prostate cancer on MRI: a systematic review”, a 
comprehensive comparison is carried out between the performances of DL models and traditional 
ML (TML) models. These models were specifically trained to discern between cases of csPCa and 
non-significant (ncsPCa).  

According to this study, in the realm of DL, the recurrent use of Convolutional Neural Networks 
(CNNs) based on U-Net34 stands out. Meanwhile, in the context of TML, Random Forest (RF), Logistic 
Regression (LR), and Support Vector Machines (SVM) are identified as the most employed for this 
purpose. Table 1 summarizes the best studied algorithms along with their AUC metrics and the 
inputs used. 

Model AUC Inputs 
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Logistic Regression 0.98 T2WI, ADC 

CNN (MISN) PZ: 0.89 

TZ: 0.97 

ADC, BVAL, DWI0, DWI1, DWI2 
Ktrans, T2WI-Cor, T2WI-Sag, T2WI-

Tra 

CNN (VGG16) 0.89 T2WI, ADC 

Random Forest WP: 0.88 

PZ: 0.84 

TZ: 0.89 

T2WI, ADC, b=1500 

Table 1. Performance Comparison of Different Models in clinically significant Prostate Cancer Detection (CNN: 
Convolutional Neural Network, AUC: Area under the curve, WP: Whole Prostate, PZ: Peripheral Zone, TZ: 

Transition Zone, MISN: Multi-Input Selection Network)  

The results indicate that the best performance was achieved with a LR algorithm, followed by two 
CNN models and a RF. If the focus is on the type of data that has been used for training, it is observed 
that in over 82.35% of the cases studied, both in DL and TML, the models' inputs are T2WI images. 
Specifically, in DL models, 100% of the studies considered in this review use T2WI images, and 80% 
of them combine them with the ADC. Additionally, in 3 out of the 5 evaluated studies, T2WI images 
are combined with DWI. On the other hand, in TML architectures, 75% use T2WI images, and all of 
them incorporate the ADC metric. However, only in 3 out of the 12 evaluated studies are T2WI 
images, DWI, and the ADC combined. Finally, this comparative study highlights that most of the 
models were trained using the PROSTATEx public dataset35. It concludes by noting that the exclusive 
use of a single dataset can easily lead to overfitting, as it does not consider the variability in 
annotations among experts and limits the generalization of results. 

2.1.3. Fusion models 

It is worth mentioning that while most studies in the literature focus on the use of clinical data such 
as PSA or DRE, or on the use of features extracted from MRI, there are some studies that have 
focused on combining both types of data to train prediction algorithms for csPCa. A good example 
of this is the research carried out by X. Cheng et al.36, whose objective was to develop and validate 
a predictive model based on clinical features and mpMRI to reduce unnecessary systematic biopsies 
in patients without prior biopsy suspected of prostate cancer. They used multivariable logistic 
regression analysis to determine independent predictors of csPCa on cognitive MRI-targeted biopsy, 
and they established and evaluated three different models: clinical, MRI, and fusion models. They 
found that the combined model achieved the best discrimination (AUC 0.88) compared to both the 
MRI model and the clinical model. Regarding clinical variables, PI-RADS score, index lesion (IL) on 
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the peripheral zone, age, and PSAD were considered independent predictors and included in the 
combined model.  

Along the same lines, Z. Chen et al.37 performed a statistical modelling on the use of mpMRI data 
together with PSA values to establish and validate a new diagnostic model for csPCa called the P.Z.A 
score. According to their analysis, this model works well enough to increase the detection rate of 
csPCa.   

Furthermore, A. Hiremath et al.38 conducted a study with the aim of constructing an integrated 
nomogram (referred to as ClaD) that combined DL-based image predictions, PI-RADS score, and 
clinical variables to identify csPCa in bpMRI. They trained two DL models, AlexNet39 and DenseNet40 
for image predictions. The results showed that AlexNet outperformed DenseNet, particularly in its 
ability to differentiate between both grades of the disease. Furthermore, AlexNet enabled the 
identification of recurrences in patients who had previously overcome cancer. Among the clinical 
data they used as input, they specifically included prostate volume (PV), PI-RADS score, PSA, and 
lesion volume (LV). Their findings underscore the utility and potential of combining MRI images with 
clinical data to enhance the precision and clinical application of DL models in prostate cancer 
diagnosis and monitoring. 
A study that is also highly interesting is the one carried out by M. Li et al.41, where they aim to 
evaluate the potential of clinical-based model, a bpMRI-based radiomics model and a clinical-
radiomics combined model for predicting csPCa. To this end, they developed three logistic 
regression models. The first model is based on radiomic features extracted from the MRI images. 
The second model takes as input risk factors such as age, total PSA, free PSA and PSAD. Lastly, the 
combined model integrates these two approaches, achieving a final AUC of 0.98. 

This combined approach of clinical data and features derived from MRI will be pursued in the FLUTE 
project. We will develop a model that will use advanced DL techniques for csPCa prediction from 
clinical data such as age, PSA and DRE (starting from the conclusions already obtained by the partner 
VHIR in the aforementioned “Barcelona predictive model"), and combine it with information derived 
from MRI, based in particular  on the QIBs extracted by the QBIM partner with their proven expertise 
(see Section 4.2 for more information on the tools to be used for this extraction). 

2.2. FL-tailored AI models 

2.2.1. Implementation of FL in medicine 

The significance of advancements in the field of ML has been demonstrated, as well as how these 
technologies can provide substantial support in several application domains, such as healthcare, 
making an in-depth analysis of its use for the detection of csPCa. However, these remarkable 
advances usually encounter a crucial challenge: data scarcity. Most of the ML models need large 
amounts of data to be trained, which often reside in different locations. This distribution of data is, 
in fact, often desirable to improve the generalisation and robustness of models. The problem is that 
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centralising this data to train algorithms raises fundamental privacy and security concerns, 
especially when dealing with sensitive information. FL appears to address these concerns. 

FL extends the principles of ML by allowing models to be trained in a decentralised way at the 
different data locations instead of centralising the data to train the models. This allows to avoid the 
need for direct transfer of raw data. Instead, what is shared are the parameters or weights of the 
model being trained. The fundamental idea is that models are trained on local nodes, and only the 
updates to those models are shared. McMahan et al.42 discuss in their study the clear advantages 
of FL for privacy compared to data centre training. They say that keeping even an anonymised 
dataset can jeopardise privacy by linking it to other data. Instead, the information transmitted for 
FL is the minimum update needed to improve a particular model.  

In the contemporary digital era, the convergence of advancements in technology and medicine has 
resulted in substantial progress in the diagnosis, prognosis, treatment and management of diseases. 
AI has become a pillar in the transformation of healthcare thanks to its ability to analyse large 
datasets, identify complex patterns and improve clinical decision-making. A great deal of research 
focuses on the use of ML algorithms on clinical data, be it raw data, tabular data or medical images. 
However, in the age of AI, innovation in healthcare is severely limited by the availability and 
accessibility of high-quality datasets. Researchers often encounter the problem mentioned above: 
the right data is not available from a single source and training datasets must be composed using 
data from different organisations. In many cases, patient data are dispersed across several locations 
such as hospitals, clinics and medical devices. In addition, the use of data from different sources 
(e.g. from different geographical areas) gives better results in terms of robustness and 
generalisation of AI algorithms. However, it is in centralising clinical data from different sources that 
privacy and security concerns arise.   

Health data are highly sensitive and subject to strict privacy regulations. As indicated by N. Rieke et 
al.43, even if strategies such as data anonymisation might circumvent these limitations, it is widely 
recognised that simply removing metadata such as patient name or date of birth is often insufficient 
to preserve privacy. With current innovative technologies it is possible, for example, to reconstruct 
a patient's face from Computed Tomography (CT) or MRI data. As a result, research is increasingly 
shifting towards the use of technologies that can ensure maximum security of this type of data. 
Several methods have been proposed to protect privacy, including de-identification techniques such 
as differential privacy44 45, synthetic data generation, homomorphic encryption, and FL. It is the 
latter that is the focus of this review. 
 
Initially developed for domains such as mobile and edge device applications46, FL has recently gained 
popularity in different healthcare sectors. An example of this is the study carried out by Theodora 
S. et al.47 in which they sought to solve a supervised binary classification problem to predict 
hospitalizations for cardiac events, based on their Electronic Health Records (EHRs) and using a 
federated algorithm based on a sparse Support Vector Machine (sSVM) architecture. I. Dayan et 
al.48 also developed an interesting, federated model called EXAM (electronic medical record (EMR) 
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chest X-ray AI model), which predicts the future oxygen requirements of symptomatic COVID-19 
patients using a combined input of vital signs, laboratory data, and chest X-rays. In developing this 
model, which was trained in a federated way on data from 20 institutes worldwide, FL facilitated 
rapid data science collaboration without requiring data sharing and generated a model that 
generalized across heterogeneous and unharmonized datasets. 

In the same study carried out by G. Choi et al. mentioned above, they analyse different research 
studies related to the application of FL in the medical field published to date. They classified these 
studies according to the types of data used, the target disease, the use of open datasets, the local 
FL model and the neural network model. They conclude that this technology was mainly used for 
training algorithms based on medical images, and the most studied target diseases were COVID-
1949 50 51 and cancer. In line with the latter, studies focusing on the use of FL with radiology52 53 and 
pathological54 55 images are particularly noteworthy, but other types of data such as the ultrasound 
images used by H. Lee et al. 56 to train a FL algorithm to predict whether thyroid nodules are benign 
or malignant. In this study, where different types of DL networks (VGG1957, ResNet5058, 
ResNext5059, SE-ResNet50 and SE-ResNext50) were trained, it was shown that the performance of 
FL using decentralised data is comparable to conventional DL using clustered data and is potentially 
useful for analysing medical images while protecting patients' personal information. This survey 
concludes that FL in the medical domain appears to be in its early stages at present, with most 
research using open data and focusing on specific types of data and diseases for performance 
verification purposes. However, FL medical research is expected to be increasingly applied and to 
become a vital component of multi-institutional research. 

In addition to the above, it is also interesting to mention the review made by A. Chowdhury60 et al. 
on the application of FL in the field of oncology and cancer research. This extensive and in-depth 
review identifies that FL has been explored in many studies on different types of cancer, where the 
goal is either to compare FL with conventional centralised data analysis approaches in terms of 
performance or to develop novel methods to solve different challenges. In the most common 
training scenario, researchers simulate a FL environment by taking an existing dataset and dividing 
it into subsets using a partitioning scheme, where each subset represents a client in a FL group. This 
review concludes several relevant points on current research in terms of FL applied to the field of 
oncology. Among the most interesting is the fact that FL has the potential to become the main 
learning paradigm for distributed cancer research, but specific obstacles such as the existence of 
correctly labelled medical data, have slowed its adoption in the clinical setting. In addition, most of 
the papers they encountered use cancer datasets primarily for benchmarking purposes. There are 
very few works in FL that address clinically relevant questions. Among the papers they reviewed, 
many propose new software frameworks, and virtually none follow-up with a clinical trial. 
Consequently, based on this literature review, FL remains largely absent from the field of clinical 
oncology. Finally, the compliance and security aspects of healthcare continue to present significant 
hurdles, and more research is needed into techniques that work with FL to maximise systems 
security. 
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If we focus on the specific use case of the FLUTE project, the prediction of csPCa, there are also 
some recent studies that use an FL-tailored solution. Among them is the work published by A. 
Rajagopal et al. 61, where they present a flexible FL framework for training, validating, and evaluating 
customised algorithms for detecting prostate cancer. Specifically, they train a custom DL model for 
multi-parametric MRI-based detection and classification of prostate cancer based on data from two 
University hospitals. In this study they observed a positive result, with significant improvements in 
generalization performance across sites and negligible degradation of performance within the site 
for both lesion segmentation and csPCa classification. However, they comment that further data 
and participating institutions may be needed to improve the absolute performance of prostate 
cancer classification models. This study also mentions previous work focused on applying FL to 
prostate cancer prediction using MRI data, such as the one published by Sarma et al.62, where they 
used multi-centre federated training to improve prostate gland segmentation, an important sub-
step in the search for prostate cancer biomarkers. Another study conducted by I. Shiri et al.63 also 
focuses on prostate lesion segmentation from MRI images using federated DL algorithms. In this 
research, a two-stage cascaded U-Net consisting of modified 3D U-Net and Dual Attention 2D U-Net 
was implemented as the core of DL segmentation. MRI images and a prostate mask obtained from 
400 patients with histologically proven prostate cancer through T2-weighted magnetic resonance 
imaging from eight different centres were used as input in this network. Their FL algorithm 
outperformed centre-based algorithms, where each centre developed a model using their local 
dataset. 

2.2.2. Techniques for improving AI model performance 

The landscape of ML has been significantly influenced by the demand for large-scale training data, 
a requirement for building robust and powerful models. It has been shown that FL, an emerging 
decentralized ML paradigm, offers a novel solution by enabling collaboration among multiple data 
owners while prioritizing data privacy. This approach hinges on aggregating models learned on 
diverse clients to construct a more general model, subsequently distributing it back to the clients 
for further refinement.  
In this section, we review data valuation and model initialization techniques to enhance the 
performance of AI models and their aggregation, which is one of the main objectives of the FLUTE 
project. 

Data Valuation 

In the FLUTE project, data owners are hospitals that exhibit significant heterogeneity in terms of 
data quality, quantity, and distribution. This heterogeneity may stem from variations in instruments, 
data collection methodologies, among other factors. Such heterogeneity poses a challenge as it can 
result in suboptimal and less robust models due to variations in statistical distribution of the training 
data64. 

Data valuation techniques are crucial to address this data heterogeneity in FL. In many instances, 
clients collect non-identically and independently distributed (non-IID) data, which imply to deal with 
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Out-of-Distribution (OOD) data. In this context, in 65 propose Federated Out-of-Distribution 
Synthesizer (FOSTER), which learns a class-conditional generator to synthesize virtual out-of-
distribution samples, maintaining data confidentiality and ensuring communication efficiency as 
required by FL. 

In addition, Data Valuation methods play an important role in fairly and efficiently evaluating the 
contributions of data owners to the training process in an FL platform. Some contributions in this 
area utilize adaptations of the Shapley Value to the FL requirements, to quantify the significance of 
individual data contributions. The Shapley value (SV)66  defines a payoff scheme that fulfils many 
desirable criteria for a fair data valuation. It has often been used to assess training data in centralized 
learning, however it entails prohibitive communication costs in a FL environment as it requires 
exhaustive evaluation on each subset of data. In 2020, Wang et al.67  proposed a federated Shapley 
value tailored for FL, covering empirical study tasks such as noisy label detection, adversarial 
participant detection, and data summarization across diverse benchmark datasets. Subsequently, 
in 2022, Fan, Zhenan, et al.68 introduced the completed federated Shapley value to enhance fairness 
in the federated SV. 

Related to this matter, the integration of self-supervised techniques has become increasingly 
important. Self-supervised learning revolves around training models to understand the inherent 
structure of the data itself, without relying on externally annotated labels. This shift in the learning 
paradigm offers significant advantages, particularly in settings where data privacy, distribution and 
diversity vary across different entities. By pretraining models on local data using self-supervised 
strategies and then refining them in FL settings, self-supervised learning opens up new avenues for 
efficient, privacy-preserving and scalable FL. Several novel techniques and strategies have emerged 
in this field, leveraging methods from the self-supervised learning literature such as non-contrastive 
self-supervised learning69 or contrastive self-supervised learning70; although fundamentally 
different, both approaches try to address the challenge of scarce labelled data, exploiting the ability 
of self-supervised learning techniques to extract valuable information from unlabelled data 
distributed across a set of clients.  

Some self-supervised techniques found in the literature 71 also distinguish between more 
specialized cases such as vertical FL or horizontal FL. In the horizontal FL case, the different clients 
have different samples with a shared feature space, while in the vertical FL case, each client has the 
same set of samples, but the feature space varies from client to client. The choice between these 
two paradigms depends on the specific data sharing constraints and the nature of the problem at 
hand. 

In this context, Active Learning (AL) techniques have also gained attention in FL. They aim to select 
the most informative or challenging samples for labelling, thereby improving the model's 
performance. In [72], it is proposed to apply Active Learning (AL) and sampling strategy into a FL 
framework to reduce the annotation workload in an image classification context. While we do not 
expect to encounter unlabelled data during the FLUTE project, this provides an approach worth 
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considering for potential future data owners with unlabelled or semi-labelled data. AL can also be 
useful for leveraging large, unlabelled datasets for model initialisation. 

Model initialization 

Model initialization influences convergence, performance, and generalization in the training of ML 
models. Based on the categorisation made in [73] we can distinguish localized and centralized 
approaches. 
 
Localized initialization:  
 
1. Random initialization. In the literature, most works often use random parameters (weights and 

biases) to initialize the model. They are populated with values drawn from a chosen probability 
distribution, typically Uniform Distribution X ~ U(a, b) , Truncated Normal Distribution TN(μ, σ2 
, a, b) or Normal Distribution X ∼ N ( μ , σ2) (typically X ∼ N ( 0,1)). 

2. Client-Specific Initialization attempts to leverage data owner-specific data features, 
encouraging a more tailored and efficient learning process. It could be: 
2.1. Data-Driven Initialization. Every data owner performs an analysis of their local data, 

identifying statistical properties (data distribution, imbalances, etc.), which are later used to 
set the model’s parameters. 

2.2. Domain-Specific Initialization utilizes domain-specific knowledge that is relevant to 
the target task in each client before starting the FL process.  

2.3. Clustering-Based Initialization initializes groups of clients according to their 
similarities, then tunes local models based on client-specific attributes before the FL 
commences. However, clustering-based initialisation may not be considered during the 
FLUTE project due to the small number of data owners. 
 

In centralized initialization, a central server initiates model training, often after pretraining a global 
model on large datasets and then the model is distributed to all data owners for training and fine-
tuning on their local data. Initializing from a pre-trained model reduces training time of training 
more accurate models (up to 40%) and reduces the impact of both data and system heterogeneity74, 
75.  Transfer learning initialization 76 may also be used in scenarios with shareable domains, or when 
not enough data is available for the target task77.  
 

2.2.3. Aggregation methods for FL applications  

In an FL environment, it is necessary to merge individual models to create a common model. This 
merging process involves the use of techniques known as "aggregation methods". In the previously 
mentioned TRUMPET project, research has been conducted on various aggregation methods. 
However, in this analysis, we will not replicate the research already conducted in this project. To 
provide a more comprehensive and complete overview of what is covered at this point, relevant 
information reported in TRUMPET D2.1 is cited in italics. 
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In the task of federated aggregation, all data owners have some data (a scalar, vector, matrix or more 
compound object) and the goal is to ensure that a data user receives the aggregate (typically sum or 
average) of these data.  

This is a fundamental operation in FL, both for algorithms which can be decomposed directly into 
averages and for more complex algorithms such as stochastic gradient descent (SGD) algorithms 
which frequently need to add up gradients computed by data owners.    

If there is a trusted central curator, the data owners can simply send their gradients to that trusted 
party.  If data owners have no trust at all, they can add local differential privacy (LDP) noise to their 
data, but as LDP typically requires a large amount of noise, this usually is not desirable from a utility 
point of view.  

If data owners cannot trust the aggregator, then sending cleartext data without noise is not advisable, 
even if the data is constituted only of gradients rather than the originally sensitive information.  

There has been a lot of interest in strategies which do not require to fully trust parties, resulting in 
several approaches for different security and threat models. One line of works employs a trusted 
shuffler to create anonymity, which can be used to obtain increased privacy. While interesting for 
theoretical analysis, this approach only replaces the need to trust an aggregator by the need to trust 
a shuffler, or a shuffling system consisting of several nodes. Another line of work studies secure 
aggregation methods relying on cryptographic techniques. All these strategies assume an honest-but-
curious (also called semi-honest) security model and/or have a significant computational cost.  
Recently, more efficient approaches have been studied which at the same time are robust under more 
malicious models, e.g., when one assumes at most a fixed fraction of the parties is malicious.  

Hence secure aggregation methods exist which, depending on the threat model, can deliver the 
aggregation of the data owners’ data without revealing the individual terms or intermediate results.  
Sometimes it is undesirable to reveal this aggregate immediately, as in order to achieve statistical 
privacy (e.g., differential privacy) one may want to add noise first.  One challenge is that none of the 
parties allowed to know the noise term, as otherwise this party could act as adversary and subtract it 
from the published result.  Fortunately, various strategies exist to generate and add the noise 
privately. 

In FLUTE, our ambition is to scale up MPC-based learning.  We will explore multiple strategies to 
realize this improvement of scalability, most of which will impact both the local computation in the 
data owner node and the aggregation over the several data owners, including the SMPC used in that 
context. We will provide some background related to SGD here, and background for other ideas in 
Section 4.1 on SMPC below. 

Compressed gradients.  Very recently, the idea has been proposed to compress gradients78 in the 
context of SGD. In particular, one can sample part of a gradient, or one can limit every step to only 
a selection of dimensions in the hope to send over the network shorter gradients while still realizing 
good convergence, and in particular achieve faster convergence for the same communication cost. 
Part of our work in FLUTE will further explore this idea.   
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One can for instance sample uniformly K coordinates of the gradient, and send only these 
coordinates to the central server, hence reducing the communication cost from d (dimension of the 
parameters) to K. This compressor (called Rand-K) enjoys nice theoretical properties since it is an 
unbiased estimate of the gradient. Another choice (among other things) is to consider the K 
coordinates of the gradients which are the largest in absolute value (Top-K compressor); in this case, 
each client has extra computations to make, to sort the values of each coordinate of the gradient: 
this leads to a computation cost of O(d log(K) ) at each iteration instead of O(d) in the non-
compressed case (note that these extra computation time is little compared to the communication 
time). The unbiasedness of this compressor makes it more difficult to study; at least in the 
deterministic case, it can be shown that Top-K compressor outperforms Rand-K compressor 79  

In general, these compressors come with a loss of information, which may prevent the algorithm 
from converging to a minimum of the objective function, even in some very simple cases 80. To 
preserve convergence guarantees, a recent idea has been to incorporate compression errors into 
subsequent iterations of the algorithm, thus making it possible to obtain convergence guarantees, 
even for biased compressors like Top-K. This approach, known as "error feedback", is a promising 
line of research.  

All the mentioned modifications of the vanilla SGD are still first order methods. Stochastic 
optimization methods of order 1 have a slow rate of convergence, of the order of 1/T, where T is 
the iteration of the algorithm 81 82. It can be shown that this rate cannot be improved by any 1st-
order method. Thus, quasi-Newton methods (widely used in deterministic optimization) cannot 
improve substantially on theoretical convergence results.  

On the other hand, Newton-type methods, which are of order 2, could achieve better convergence 
rates. In the deterministic case, a Newton-type algorithm with compression of the hessian was 
considered in [83]. However, calculating the Hessian matrix requires a computation time of d^2, 
which is not acceptable when considering DNNs. Combining this approach with Top-K or rand-K 
compressors, an alternative could be to compute the Hessian only on the subspace generated by 
the K coordinates selected by the compressor.  
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3. An analysis of PET methods for FL environments 

In the previous section, we discussed the use of AI algorithms in the medical field, specifically in 
detecting csPCa. We also introduced the concept of FL and highlighted its importance in medical AI. 
Various techniques used in training these technologies were presented, ranging from aggregation 
methods to techniques for improving model performance. Finally, we discussed available software 
tools for training FL models. In this section, we will focus on ensuring the security of these 
environments. We will present a comprehensive overview of the state-of-the-art Privacy Enhancing 
Technologies (PETs) that will be employed to safeguard medical information. Specifically, we will 
focus on Secure Multi-Party Computation (SMPC) and Trusted Execution Environments (TEEs). It is 
worth noting that PETs are a category of secure computing techniques dedicated to protecting the 
users’ personal information. This is achieved through the implementation of data minimization, 
anonymisation, and encryption strategies84. 

3.1. Secure Multiparty Computation (SMPC) 

In its deliverable D2.1, the TRUMPET project provided an overview of SMPC as PET method.  For 
completeness, we here quote this overview in italics. 

Secure Multiparty Computation (SMPC) protocols allow a group of parties to jointly compute a 
function while also protecting the privacy of the participants' inputs. It was first introduced by Yao for 
the two-party case as a solution to the Millionaires Problem, and later generalized to the multi-party 
scenario by Goldreich, Micali and Wigderson. An important distinctive feature which distinguishes 
SMPC from other more conventional cryptographic schemes is that SMPC also seeks to protect against 
adversaries coming from the system itself, hence protecting the privacy of the participants' inputs 
from each other.  

The SMPC field covers a wide list of cryptographic techniques ranging from several higher and lower-
level tools as Garbled Circuits (GC), Zero-Knowledge proofs, commitments, oblivious transfer and 
secret sharing, to name just a few. Actually, it is also worth mentioning that strictly speaking, 
homomorphic encryption techniques can be seen as a subset of SMPC, and many SMPC protocols 
make use of HE to work properly. Even so, there is a current trend to separate them because SMPC is 
usually seen as a mechanism to implement concrete policy enforcements among several parties which 
are interactively performing computation, while HE is usually seen as a mechanism allowing a data 
owner to securely outsource computation on his/her data. With this in mind, an exhaustive 
classification of the different SMPC protocols would require to take into account several parameters, 
as for example, the number of parties involved (mainly two-party or multi-party), the type of 
corruption (passive, active, covert), the number of corrupted parties (honest majority, dishonest 
majority), the mobility of the adversary (static, adaptive corruption), etc.  

Although SMPC originally started as a theoretical curiosity, since the mid 2000's important 
improvements were made showing that SMPC applications were in fact possible. The first important 
example of deployment in a real scenario was the implementation of the sugar beet auction in 
Denmark in 2008. Currently, the most practical general-purpose protocols are based on additive 
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secret sharing, and the use of Beaver triples to perform interactive multiplications. They divide 
computation in two main phases: (1) an offline phase on which some sort of correlated randomness 
is computed and distributed among the parties, and (2) an online phase on which given some 
participants' inputs the previous correlated randomness is consumed to perform the intended secure 
computation.  

The most representative example of the previous schemes is the case of the SPDZ protocol together 
with its different variants MASCOT, Overdrive and SPDZ2k. A common trait of all of them is their low 
computational cost. On the contrary, the number of interactions, and hence communication cost, 
grows with the number of parties and circuit depth, which makes the latter its weakest point in real 
scenarios.  

SMPC technology has made a huge progress in the last few years, and there are already many 
companies offering SMPC-related solutions as Sharemind, Sepior, Zcash, Unbound. This also includes 
several frameworks and software developments as the SCAPI library, SCALE-MAMBA SMPC-system, 
MP-SPDZ, Rmind, Jana relational database from Galois, etc. A very detailed list of several software 
solutions is available on the web of the TPMPC workshop. 

Many of the above schemes have been used to implement important ML or FL tasks as the ones 
required for TRUMPET use cases. Actually, there is also a rapidly growing list of works specifically 
designed to deal with training and prediction/classification phases. Some of the most recent are ABY, 
SecureNN, Quotient, Gazelle and Delphi. 
 

In FLUTE, our ambition is to scale up MPC, in particular for using optimization strategies such as 
stochastic gradient descent (SGD) using MPC we aim to reduce the communication cost by adapting 
the SGD algorithm and aligning SGD and MPC (see also Section 2.2.3 above) 

Next to aggregation-level optimization, we aim to exploit the fact that in ML algorithms often similar 
tasks need to be repeated many times. For example, in the context of secret sharing a significant 
cost is the distribution of secret shares over the data owners (every data owner gets one secret 
share of every secret variable). To avoid this communication cost, one could exploit Pseudorandom 
Correlation Generators (PCG)85,  which require a one-time setup phase after which the data owners 
can jointly generate many secret shares without communication in later steps.     

3.2. Trusted Execution Environments (TEEs) 

Trusted Execution Environments (TEEs) represent a class of hardware devices characterized by a 
distinctive feature: an isolated area within the computer system. These devices showcase 
exceptional versatility, seamlessly integrating superior performance and expanded execution 
capacity when contrasted with alternative cryptographic techniques. They excel not only in securely 
storing data but also in executing a variety of code with enhanced efficiency compared to other PETs 
86. 
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Although the term ‘TEE’ is relatively new, classes of TEEs such as Hardware Security Modules (HSMs) 
and Trusted Platform Modules (TPMs) have been available on the commercial market for some 
time87. However, in recent years, a new kind of TEE has emerged. This new category of TEE consists 
of general-purpose devices which offers a secure area isolated from the main operating system for 
processing sensitive data88.  

In general, this new kind of TEEs offers the following security guarantees: 

• Confidentiality: The content within the trusted area is accessible exclusively to entities that 
have been authorized. 

• Integrity: The content within the trusted area is exclusively modifiable by entities that have 
been granted authorization 

• Attestation: Empowers external entities to verify the integrity of the code running within 
the secure enclave89. 

In the current landscape, leading processor manufacturers have integrated Trusted Execution 
Environments (TEEs) into their processors, with ARM pioneering TrustZone90 technology in the early 
2000s. TrustZone technology enables devices equipped with an ARM processor to execute isolated 
applications within a protected area known as the ‘Secure World,’ which operates on the foundation 
of the processor’s firmware. However, the technology faced limitations, notably in the areas of 
confidentiality and integrity, which were safeguarded by firmware rather than hardware. This 
oversight permitted attackers with hardware access to compromise the information. Consequently, 
ARM has initiated the development of its new TEE, ARM CCA91, which is poised to address these 
vulnerabilities but is not yet commercially available. 

After ARM's initiative, other manufacturers have entered the arena, contributing to the ongoing 
evolution of this technology. Notably, Intel took a significant step forward with the introduction of 
SGX92 in 2015, followed by introduced enhancements in SGXv293. The SGX technology enables the 
creation of encrypted memory areas within the main computer memory, which are exclusively 
decryptable by the processor. These encrypted memory regions, commonly referred to as enclaves, 
ensure that no entity outside of the enclaves can access the data contained with them. Furthermore, 
in 2023, Intel introduced a new TEE technology known as Intel TDX94. TDX enables the deployment 
of a full virtual machine (VM) within a trusted area. This new trusted area, referred to by Intel as a 
‘trust domain’, provides the same security guarantees as Intel SGX. However, it offers a significant 
advantage over SGX as it does not require changes at the application level. 

AMD, on the other hand, has also invested in introducing TEEs in its processors by developing the 
SEV95 (Secure Encrypted Virtualization) technology, along with its enhanced versions: SEV-ES 
(Encrypted State) and SEV-SNP (Secure Nested Paging). Like Intel’s TDX, the SEV family enables the 
deployment of virtual machines within an isolated and trusted area. 

Initially conceived as secure areas within the primary processor, Trusted Execution Environments 
have recently seen expansion beyond the processor itself. These secure areas now extend to other 
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trusted devices, including graphics cards. This extension enables TEEs to be utilized in scenarios 
where the computational power required was previously unfeasible, such as certain AI workloads. 
In this context, NVIDIA plays a pivotal role with its product Nvidia Confidential Computing96. This 
innovative solution allows sensitive workloads to be processed on graphics cards, effectively 
reducing the exposure of critical information. By bridging the gap between security and 
performance, Nvidia is advancing the landscape of secure computing. 

In the context of FLUTE, a FL-based configuration, Trusted Execution Environments play a pivotal 
role in ensuring the security of the handled information. While FL mitigates data privacy risk, it 
encounters persistent challenges related to the confidentiality and integrity of computations, 
relying heavily on trust between involved parties97. Regarding this issue, TEEs can provide 
advantages such as code integrity in the untrusted parties as well as in the central aggregator. Some 
important examples of applying TEEs within the FL landscape includes SecFL98, a confidential FL 
framework that performs the global and local training inside TEE enclaves. It also has a transparent 
remote attestation mechanism that allows the parties to verify all computations. Other important 
work is PPFL99, a FL framework designed to limit data leakage and run on devices with limited 
resources. Like SecFL, PPFL uses TEEs on both sides, the central aggregator and the local training. 
Other significant research is Flatee100, an efficient privacy-preserving FL framework based on TEEs, 
which considerably reduces training and communication time, However, this optimization comes at 
the cost of sacrificing protection against adversarial data poisoning.   
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4. Frameworks and tools 

In this section, the different frameworks, tools and software that will be used in the FLUTE project 
will be defined. On the one hand, the tool that will be used on the FL environment will be discussed: 
Pysyft. On the other hand, we will define two specific tools that will be used within the framework 
of WP2 to process MRI images and extract the aforementioned QIBs for use as input in the csPCa 
prediction algorithms: the QP-Care® and the QP-Prostate®101. 

 
4.1. FL frameworks and tools: PySyft 

This sub-section focuses on various software tools that enable FL model training. Here we will build 
upon the insights derived from research conducted in the TRUMPET project.  

The research in the field of FL has been vast, complex and under continuous development. In the 
case of FLUTE project, we are bound to depend onto existing advancements and developments 
provided by existing tools and software to allow the project to make a solid trial on the pilot use 
cases, given the timeline we have. The existing software tools will allow us a foundational 
framework to begin with and browse our options while defining our own needs and adopt, update, 
and customize those tools based on those needs. We have learned a lot from the research on the 
tools and technologies available in the field of FL during our work in the TRUMPET project. The FL 
tools that are going to be used in FLUTE would basically be an extended version of this project. This 
extensibility was a base concern in the research and development of such software tools for 
TRUMPET. 
The initial research decision for TRUMPET FL was to use PySyft102 as an FL library. The practicality of 
this decision is well elaborated in the TRUMPET D2.1 deliverable, section 2.4. A comparison between 
around 20 FL tools that are either production grade or research oriented was conducted. Based on 
our research on the usability of those tools for our need, vwe favoured PySyft the most. There were 
many reasons for this, but most importantly the design of PySyft makes one appreciate the possible 
scalability of this opensource platform by OpenMined 103. However, PySyft has quite a steep learning 
curve, and may not be best-suited for industrial use. Neverthless given our context of use, it provides 
modularity and flexibility to work with other DL tools, an extensive library of privacy tools as well as 
a great community support. 
But the decision of primarily using PySyft as the FL tool has been ever evolving, with research and 
development continuously revealing unforeseen or unconsidered perspectives. 
The first glitch was the issue that arose around the use of PySyft as a lib or as a service. The decision 
was to use PySyft as a separately deployable service. 
At this point it was clear that PySyft alone cannot deliver the infrastructural demand of the 
TRUMPET or FLUTE project. This led to the rise of the concept of FL wrapper project, that would 
partially use PySyft, but can also introduce other functionalities that do not exist in the current 
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version of PySyft. Basically, the wrapper project may contain custom implementations and several 
other services or libraries. The key abstraction considerations for the development of FL wrapper 
project are outlined below:  

1. Continuously supporting integration of various FL tools. 
2. Considering exposed APIs by the integrated dependency tool as a black box. 
3. The wrapper defines the functionalities or features to support by its own custom APIs, 

abstracting any or all the wrapped tools. 
4. An integrated or dependency tool may support only a subset of the decided key features. 
5. One or more tools may be incorporated (wrapped) 
6. One or more features provided by a given tool can be extended with custom or changed 

functionalities. 
7. One or more features can have complete self-dependent implementation within the 

wrapper tool. 
8. Where necessary custom algorithms can be introduced from outside complying appropriate 

interface protocols. 
As we progressed, the need for this wrapper tool is better realized, and the realization is outlined 
below –   

1. We want to have our own FL training flow. 
2. We want to have custom PET methods. 
3. We want to have custom budgeting functions, study agreement and in the future many more 

as we suppose. 
4. We want to have custom AI algorithms. 
5. We want to hide use of dependency tools (e.g. PySyft) 
6. We want to be able to replace, extend, and add more dependency tools or libs (e.g. fedML) 

 
The demand for strict privacy made us replace the communication mechanism developed by PySyft 
with our own custom VPN, using tailscale. 
The latest change is the outcome of Gradiant’s research on implementing PET’s using PySyft. Their 
research and development gave rise to a set of new HTTP services that will work parallel to the 
PySyft services. These new services were introduced because PySyft did not allow implementation 
of custom PETs (Lagrange Coded Computing technique). 
As the research continues, these new findings will evolve the landscape of the used Frameworks 
and tools and software for FL in the development of FLUTE. But the need for a scalable wrapper lib 
is not going to change. The platform requires to define a stable interface for Researchers and Data 
Owners to integrate. On the other hand, the wrapper lib should be scalable to accommodate the 
introduction of any new FL tools, libs and frameworks. This would allow us to continuously build for 
the FLUTE project without breaking the software or getting stuck into the implementation of some 
new PET or AI algorithm. 
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4.2. MRI processing and QIBs extraction tools: QP-Care® and QP-Prostate® 

The AI algorithms developed in FLUTE aim to predict csPCa, and for this purpose, they will take two 
types of data as input: clinical variables and QIBs. The clinical variables will be provided directly by 
the three hospitals in the consortium (VHIR, CHU and IRST). Regarding the QIBs, these will be 
extracted from MRI images from the same hospitals using the tools provided by the partner QBIM. 
All MRI image analysis provided by QBIM takes place on the Microsoft Azure cloud. QBIM's cloud is 
commonly known as QP-Care®, which provides a portal to a results viewer and behind which analysis 
tools are located. Once the studies are available in QP-Care®, they will be analysed and new series 
will be generated. Users can access a viewer through the QP-Care® portal to view the results. 

QBIM currently offers an analysis module for prostate gland characterization integrated into the 
platform, called QP-Prostate®. This tool is a Food and Drug Administration (FDA) 510(k)-cleared 
software that has been clinically validated in installations in the US, Spain, Poland, Slovakia and 
South America as a safe and accurate decision support tool for PCa detection. It allows to process 
and analyse both bpMRI and mpMRI, segmenting the prostate gland images into zones and 
extracting those QIBs. This analysis will be performed whenever the T2-weighted (T2w), DWI 
sequences are available, and optionally, DCE sequences, provided that they meet the PI-RADS v2.1 
criteria (or following the adapted acquisition protocol described in Annex 1, p. 43).  

For prostate characterization, QP-Prostate® will perform automatic processing according to the 
following steps: 

1. Spatial Smoothing: The images are smoothed to preserve the image edges and remove 
noise. 

2. Motion Correction: The DWI images are correlated with the DCE images to correct artifacts. 
3. Spatial Alignment: Using the T2-weighted series, the DWI and DCE images are aligned. 
4. Automatic segmentation of the prostate into three regions: central/transitional zone, 

peripheral zone, and seminal vesicles. 
5. Generation of parametric maps (quantification): by calculating the ADC from the DWI 

sequence or the vascular permeability rate (Ktrans) and other parameters extracted from 
the DCE sequence, such as kep or ve. 

QP-Prostate® generates prostate segmentation into its different regions, including the central and 
transitional zone, the peripheral zone, and the seminal vesicles. Additionally, it automatically 
identifies regions suspected to be pathological in the prostate gland based on bpMRI. The results of 
these segmentations are saved in DICOM-Seg format and can be viewed by users on the platform. 

Thanks to this software, in FLUTE we will be able to extract QIBs maps from MRI scans that will be 
used, together with clinical variables, as input to the fusion models for csPCa prediction.  
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5. Conclusions 

This document reported the research results corresponding to Task 2.1 of the FLUTE project. An 
exhaustive analysis has been conducted on current research and available technologies related to 
the use case of this project: training a clinically significant prostate cancer (csPCa) prediction AI 
algorithm in a secure, scalable Federated Learning (FL) environment while also maintaining AI 
performance. 
 
AI adoption across several sectors of society has been rapidly increasing in recent years, with its 
integration into the clinic representing a particular notable example. The intersection of AI and 
medical domain signifies a pivotal moment in the evolution of healthcare. In this context, the FLUTE 
project aims to contribute to this ongoing innovation by developing an AI model for csPCa 
prediction. This document presents a comprehensive review of current research on the use of AI 
technologies to detect this ailment. This has helped to better understand the use case and the types 
of data typically used in such tasks, including clinical data like prostate-specific antigen (PSA) or 
Quantitative Image Biomarkers (QIBs). It has been concluded that most studies in this area focus on 
predicting csPCa using MRI images and clinical data separately, however a fusion of both 
information sources provide higher results in prediction task. In the FLUTE project, we will use a 
combination of both types of data to improve results, employing advanced Deep Learning (DL) 
techniques for this task. We will build upon the previous study conducted by our partner VHIR, 
where they predict csPCa using ML techniques on clinical data. Our aim is to enhance the algorithms 
by training them in a federated manner, incorporating data from our other two clinical partners: 
CHU and IRST. Additionally, we will train a fusion DL model using QIBs extracted by QBIM using their 
QP-Care® and QP-Prostate® tools. All this work will be developed in Task 2.2. 
 
Throughout this document, it has been also shown that AI, despite being an extremely useful tool, 
has some drawbacks. Among them is the fact that to train algorithms with good performance and 
able to generalise correctly, it is necessary to use large and high-quality datasets, and often this is a 
challenge in the real world. Clinical data is often located in different sites, and due to the sensitivity 
of this data, sharing it raises clear concerns related to privacy and security, which are regulated 
under strict policies such as GDPR at the European level, or internal Ethical Committees of each 
hospital. One solution to these issues is the use of FL, a technology that allows global training of 
algorithms at each data location, making sharing data no longer necessary. This document includes 
numerous examples of the use of this technology in the clinical field and how it is possible to apply 
different aggregation techniques to generate these global models through sparse training. 
Additionally, as one of the FLUTE objectives is to maintain AI models performance, possible 
techniques to improve this aspect, such as model initialisation or data valuation, are also being 
studied. These identified techniques will be analysed in order to choose the best option to be used 
in the FLUTE setting and will be developed within the framework of Task 2.2. 
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In this way, FL represents a paradigm shift in Machine Learning (ML), offering a framework where 
data privacy is inherently respected as the data remains within the confines of its owner’s 
infrastructure. Despite this, research indicates that privacy risks persist, necessitating additional 
safeguards. This project proposes the integration of Privacy-Enhancing Technologies (PETs), 
specifically Secure Multi-Party Computation (SMPC) and Trusted Execution Environments (TEEs), to 
enhance privacy protections. By combining these PETs, one software-based, the other hardware-
based, we aim to improve security guarantees. However, it is crucial to acknowledge that the 
adoption of these technologies may impact on system performance and limit the selection of 
deployable AI models. Therefore, a balanced approach must be adopted to ensure that the benefits 
of enhanced privacy do not compromise the system’s efficiency and the AI’s capabilities. This 
document presents an analysis of the state-of-the-art of PET technologies, both software and 
hardware, to be used in FLUTE, specifically in tasks Tasks 2.3 and 2.4. Furthermore, the combined 
performance of these techniques, considering privacy, computation, and communication cost trade-
offs, will be studied in task T2.5. 
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 ANNEX 1 
 

Quibim’s required acquisition protocol for the use of QP-Prostate® 

The QP-Prostate® analysis is based on T2-weighted magnetic resonance (MR), diffusion-weighted 
image (DWI) and dynamic contrast-enhanced (DCE) sequences. For a successful launch of QP-
Prostate®, the study must include: 

- The T2-weighted MR sequence and the DWI. 
- The T2-weighted MR sequence, the DWI and DCE. 

The inclusion criteria for the T2W, DWI and DCE are based on PI-RADS® v2.1 recommendations. The 
acceptance protocols for image acquisition are explained below.     
 
 



 
 
 

    
 

 
 44 

 
 

1.1. T2-weighted required acquisition protocol for the use of QP-Prostate® 

 

 
DWI required acquisition protocol for the use of QP-Prostate® 
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DCE required acquisition protocol for the use of QP-Prostate® 
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